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Propagation of Sound at Continuous 
Structural Phase Transitions 1 

F. Schwabl 2'3 

Structural phase transitions of second order can be divided into two groups: (i) 
distortive phase transitions, with a soft (ultimately overdamped) optic mode, 
and (ii) elastic phase transitions, with an acoustic soft mode or no soft phonon 
for shear or isostructural transitions, respectively. The propagation of sound 
shows significantly different features in these two cases. We consider the theory 
of the critical variation of the velocity of ultrasonic modes as well as the damp- 
ing and dispersion near transitions of second order. 
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1. I N T R O D U C T I O N  

Structural phase transitions can be divided into two groups: (i) distortive 
phase transitions and (ii) elastic phase transitions. 

At distortive phase transitions some of the ions or molecular groups 
are displaced with respect to each other. The order parameter of the phase 
transition is a collective coordinate which characterizes this displacement. 
The soft mode is an optic phonon, which gets overdamped at least very 
close to the phase transition temperature To. Famous examples of this 
group of structural phase transitions are found among perovskites (simple 
cubic ABO3) , which undergo ferroelectric (BaTiO3), antiferroelectric 
(NaNbO3), and antiferrodistortive R25(SrTiO3) phase transitions. At dis- 
tortive transitions the elastic degrees of freedom are secondary variables. 
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Their interaction with the critical order parameter fluctuations is quadratic 
in the order parameter and linear in the strains. 

At an elastic phase transition (also called ferroelastic) the unit cell 
undergoes an elastic deformation. Thus the order parameter is a linear 
combination of components of the strain tensor. In the majority of cases 
this elastic deformation is a shear deformation and then the soft mode is 
the corresponding transverse acoustic phonon. The other possibility, 
isostructural elastic phase transitions, are related to those elastic stability 
limits where all transverse and necessarily all longitudinal sound velocities 
remain finite. For instance, if the bulk modulus of an isotropic or cubic 
elastic medium vanishes, only the macroscopic uniform dilatation and 
gradient modes soften but none of the phonons. In this report we will con- 
sider only the more interesting and prevalent case of elastic phase trans- 
itions accompanied by a soft transverse acoustic phonon. A substance 
undergoing an elastic phase transition is KH2PO 4 (KDP), which is better 
known for its ferroelectric properties. However, the z component of the 
electric dipole moment Pz couples linearly to (belongs to the same 
representation as) the e12 shear deformation. Consequently, the transition, 
although driven by the ordering of the hydrogen bonding protons and the 
Pz motion, becomes ultimately an elastic phase transition with the shear 
coefficient c66--' 0. A situation analogous to KDP, where an optical soft 
mode is responsible for the instability and "drives" the elastic transitions is 
rather common, e.g., LaPsO14. But there are also cases of pure acoustic 
elastic phase transitions, where the instability is driven by local fluctuations 
(NaOH). 

Distortive phase transitions in materials with short-range interactions 
and elastic phase transitions belong to different universality classes concer- 
ning their behavior near the critical point. This difference will be par- 
ticularly significant when one is concerned with sound propagation. In the 
former case the sound waves are secondary degrees of freedom, while in the 
latter case the soft mode is a transverse sound wave. Hence these two cases 
must be studied separately. 

The experimental investigation of sound propagation near distortive 
structural transitions intensified in the late sixties. (1 3) Early theories were 
based on the random phase approximation (4) and the dynamical scaling 
and the mode coupling theory. (5) The invention of new experimental 
techniques (6'7) and increasingly precise results (8'6'7) prompted the 
application of the dynamical renormalization group (RNG) technique to 
this problem. (9'1~ Also, elastic phase transitions have experienced increas- 
ing experimental (~1 2o) and theoretical (static (21'23) and dynamic (z2) RNG) 
attention. 

Our main goal is to review the present status of the theory. We do not 
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go into any details of the underlying RNG calculations but emphasize the 
basic features of the Hamiltonian and the dynamical equations of motion 
and the results derived therefrom. At appropriate places we will compare 
the theory with a limited number of experiments. Further experiments can 
be found in the review by Cummins (24) and in Refs. 22 and 25. The material 
covered in the present overview is based mainly on Refs. 9, 10, 21, and 22, 
which should be consulted for details of the derivations and for further dis- 
cussions and applications of the theory. 

Now we turn to the outline of this paper. In Section 2 we consider dis- 
tortive phase transitions and discuss the velocity, the damping, and the dis- 
persion of sound waves. In Section 3, we study the elastic phase transitions. 
In Section 4, we discuss and summarize the results, emphasizing the infor- 
mation derivable from ultrasonic experiments and the relation to phase 
transitions beyond the realm of the structural ones. 

2. D I S T O R T I V E  S T R U C T U R A L  P H A S E  T R A N S I T I O N S  

2.1. The  Hami l ton ian  and the  Dynamics  

Before starting the discussion of sound propagation we would like to 
remind the reader of some basic features of structural transitions. 

We shall denote the local order parameter of the system by ~b~(x) with 
c~= 1 ..... n. Here ~b~(x) may represent the electric moment, the staggered 
moment, or the rotation angle for the ferroelectric, antiferroelectric, or R25 
transitions, respectively. In a cubic system the number of components n of 
the order parameter equals 3. As usual the starting point in the modern 
theory of critical phenomena is the Ginzburg-Landau free energy 
functional 

H(~b) = k~ T~~ Ilro(D2 + 1(V0)2 + Uo(0Oz)2 + Vo ~ ~b41 (2.1) 

with the mean field transition temperature T~ ~ and r0oc(T-Tc~ 
In a tetragonal system n equals either 1 or 2. The tetragonal structure 

is imposed on a cubic crystal by applying uniaxial pressure. For the par- 
ticular and frequently studied case of SrTiO 3, positive uniaxial pressure 
favors the order parameter perpendicular to the axis and thus leads to 
n=2.  (26) Negative uniaxial pressure (which is more readily realized by 
applying biaxial pressure) favors the order parameter along this axis and 
thus n = 1. The possiblity of changing the universality class by applying 
pressure is an attractive feature of experimental structural phase transition 
research. 
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One of the basic quantities in critical phenomena is the correlation 
length ~ = ~o~ v which diverges at To, where r = ( T -  Tc) /Tc.  ~ is the only 
significant length scale in the problem and associated with the growth of 
is the critical slowing down of the characteristic frequency of the order 
parameter dynamics 

coc = 7 r~z (2.2) 

where in addition to the exponent v we have introduced the dynamical 
critical exponent z. We will describe the dynamics in the context of sound 
propagation shortly [Eq. (2.11)], but already at this point we mention that 
the dynamical renormalization group theory of Halperin et al. (27) gives 

z = 2 + cr/ (2.3) 

in 0 ( ( 4 - d )  2) with c =  6 In 4 _  1 ~0.726. Thus z is slightly higher than 2, 
while the conventional mode coupling theory gave z = 2 - ~/. For  most pur- 
poses z ~ 2  since the correlation length exponent  r/ is extremely small in 
three dimensions. 

Ultrasonic experiments on SrTiO3, (1-3) KMnF3,  (6'7) and other sub- 
stances of the distortive variety show a strong anomalous increase of the 
sound attenuation when approaching the critical point. Taking into 
account the usual increase with the frequency co of the ultrasonic wave one 
might in a first attempt fit the coefficient of ultrasonic attenuation by 

o~(m)'-~z-Pco x (2.4) 

The exponents p and x characterize the temperature and the frequency 
dependence, respectively. Very close to the transition the critical increase 
with r arrests and levels off. It is important to determine whether this 
rounding is due to imperfections or is an intrinsic consequence of 
dynamical scaling which requests that the v-P dependence has to go over 
into a co p/zv dependence as soon as one is so close to Tc that the charac- 
teristic critical soft mode frequency coc becomes comparable to and finally 
smaller than co. 

In the hydrodynamic region x equals 2 and p is given by Eq. (2.14a) 
below. The interpretation of ultrasonic experiments was plagued by the fact 
that even in cases where agreement was found with the theoretical value of 
p there were significant deviations from the hydrodynamic x = 2. This is 
immediately related to the above-mentioned rounding. Therefore it is 
important to have a theory which gives the complete dynamical scaling 
function for the attenuation in the whole frequency range. 

We shall now discuss the total Hamiltonian including the interaction 
with acoustic waves. The latter are characterized by the wave vector k, the 
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polarization 2, the polarization vector e(k, 2), and the normal coordinate 
Qk,x. Then the total Hamiltonian is 

H= H(fb) + H(Q) + Ha., (2.5) 

with H(~b) given in Eq. (2.1), the acoustic part 

[kco(~, 2)] 21Qk,,z[ 2 (2.6) H(Q) = ~ -~ 
k,2 

with the mass density ~ and the bare sound velocity Co(E, 2) and the 
interaction Ha, s. Since the interaction is analogous to the magnetostrictive 
interaction in magnets it is linear in Q and quadratic in ~b. 

The interaction is most easily expressed in terms of the Lagrangian 
strain tensor 

1/0ui 0uj Out Out\ 

with the displacement field 

1 
ui= ~ 2 eik" ei( k, 2) Qk,;~ (2.8) 

k,2 

and s the total volume. 
The following three cases are of primary interest. 
(I) n = 3: For a three-component order parameter in a cubic crystal 

the interaction part is (28~ 

Ha,s=f d3x[AeHfb~+Bel~(fb~+~z)+2Ceiz(~ifb2+cycl] (2.%) 

with interaction coefficients A, B, and C. In tetragonal crystals n equals 2 
or 1. 

II) n=2:  

(III) 

Ha, s -= f d3x[A'(~110 2 + ~22q~ 2) + Bt(~l l~  2 -j- ~22~ 2) 

+ 2c' 12 1 2 + + 

b = l :  

(2.9b) 

H,~.s : f d3x[~z~g33 "}- B('gll -}- g22)] 0 2 (2.9c) 
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For SrTiO3 under uniaxial pressure one finds A ' - -A,  B ' =  B " =  B, C ' =  C 
and under biaxial pressure A = A, B =  B. Here we have neglected higher- 
order anharmonicities. We also note that in the computation of sound 
attenuation we may omit the quadratic term in the Lagrangian strain ten- 
sor (2.7). Thus in all three eases the interaction is linear in Qk,~ and 

introduce the 
quadratic in ~b. 

It is convenient to 
fields (9,m) 

symmetry-adapted two mode 

1 
I ] / 1 = ~ ~  ~=1 ~ ~c~,k~ce,--k, 0//3= E ~l,k~2, k 

k (2.101 

0 2 -  [ n ( n -  1)/2] 1/2 k ~==1 

In intermediate steps of the calculation it is necessary to introduce (n - 1) 
additional such fields, the correlation functions of which are identical with 
those of 02. 

The dynamics are based on two coupled Langevin equations for the 
acoustic and soft phonons 

6H 
/SQk';" - cSQ k,;~ fiDk2Ok'~ + rlk''~ 

~H 
~ ,k  = - r - - +  ~=,k 

(2.11) 

Here t/ and ~ are Gaussian white noises, whose variances are connected 
with the bare damping terms Dk 2 and F by Einstein relations. 

2.2. Renormalization Group Theory 

The quantity of interest is the response function of the acoustic 
phonons 

a(k ,  co) = CoX(h, co) - k 2 F~ A~n~(~, 4) X~(co) (2.12) 
o-=1 

where the free response function is Go l(k, co) = fi [ _ co2 _ 
icoDk2+cg(s 2)k2]. The interactions (2.9a, b, c) lead to the self-energy 
S~(co), which equals the Fourier-transformed response function 

I ~ dt e ~~ d ( ~ ( t )  ~o (0 ) )  Z~(co) (2.13) 
: o  dt k~ T 
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Table I. Critical Exponents of Sound Propagation 

n cr ~ p~ p~/zv l - c~/zv v z 

725 

1 1 0 . 0 8 6  1.381 1 . 0 6 6 0 . 9 3 4 0 . 6 3 8 0 . 0 4 1 3  - -  2.029 

I 1 - 0 . 0 2 7  1.341 0.980 1.02 I 
2 2 0 . 2 2 3  1.591 1 . 1 6 3 0 . 8 3 7  0 " 6 7 4 0 " 0 4 2 6 1 ' 1 7 5 2 ' 0 3 1  

1 t - 0 . 1 2 5  1.306 0.913 1.087 I 
3 2 0,375 1.806 1.262 0.738 0.705 0.0419 1.25 2.03 

and k2A~n)(l~, 2) is the square of the coupling coefficient of ~ and Qk,~.- 
Equation (2.13) may be also regarded as a Kubo formula. A quick 
estimate/5'9'29~ for the anomalous damping in the hydrodynamic region is 
obtained by noting that the right-hand side of Eq. (2.13) is proportional to 
io909~71(~ 2 )  ~ieg~ . . . . . .  in the low-frequency limitJ 5"9~ Thus the exponent 

p o =  zv  + ~ (2.14a) 

~ --- ct + 2(~b - 1)(1 - c5~,1) (2.14b) 

where , is the exponent of the specific heat and ~b the crossover 
exponent. (3~ This relation is confirmed by the dynamical RNG theory 
using the e expansion. (9'1~ The combinations of critical exponents which 
govern sound propagation are tabulated in Table I for n = 1, 2, 3. The 
static exponents are taken from Refs. 32 and 33 and Eq. (2.3) has been 
used. 

To determine the scaling function a matching method similar to the 
one introduced by Nelson in the statics (34) has been used(l~ 

Im X~(co, ro, u*)/o~ = e lp~/v Im S~(o~e ~l, rl, u * ) / ~ e  zl (2.15a) 

In Eq. (2.15a)1 is chosen such, that the arguments on the right-hand side 
are away from criticality and perturbation theory can be used. To this end 
one requires 

(~eZl/~) 2 h- t2e 21/~ = 1 (2.15b) 

where ~= F k B T ~ A  2 and t is related to r. r176 

4 We assume the stability of the Fleisenberg fixed point (Ref. 31 ) in which case there is only 
one crossover exponent, and Z'3(co ) = s plus corrections to scaling. 

822/39/5-6-18 
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2.3. Resul ts  

Now we summarize the results of this renormalization group theory. 

2.3.1. A t t enua t ion .  The most spectacular feature in experiments 
is the attenuation. The critical contribution to the coefficient of attenuation 
following from (2.12) can be represented by 

(/)2 3 Im S~(o)) 
~(")(/~, co, 2) = 2c3(/~ ' ,~)t~ ~_= A(~")(fc, 2) (~ (2.16) 

where 

Im S~(co)/co = R~z "~ g~")(oJ/~z zv) (2.17) 

with a nonuniversal amplitude R~. The dynamical scaling functions g~n~(y) 
versus y=o~/o~ c are shown in Fig. la. With the singular prefactors 
separated, the flat part corresponds to the hydrodynamic region. For y >> 1 
the critical result ,2~(y)~y  -p"/zv anticipated above is found. Figure lb 
shows a comparison of what is believed to be the leading contribution in 
Eq. (2.16) with experiments by Fossheim and Holt (6,v) on KMnF3. From 
this the nonuniversal prefactor in Eq. (2.2) 

= 0.66 x 1012 rad/sec 

was found. (1~ 
We are now able to comment on the varying values of x found in early 

experiments. Clearly, if data in the crossover region (co~coc) are used, 
anything between 2 and 1 can be obtained. The above-mentioned puzzle is 
resolved by noting that probably p has been determined in the 
hydrodynamic and x in the crossover region in some of the earlier 
experiments. 

2.3.2. Velocity of  Sound. From the classical field theory defined 
by Eqs. (2.5) and (2.11) one finds for the isothermal sound velocity 

The expectation values on the right-hand side of Eq. (2.18) have the scaling 
behavior 

(t~z)ocAo + Boz + Co z - ~  (2.19) 
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Fig. 1. (a) The scaling functions g~")(y) for the damping in three dimensions. The values 
(n, a) are indicated on the graph. We recall ~" ) (y )  = R~z")(y). The curves ~ )  and R~3) almost 
coincide and cannot  be distinguished in this plot. (b) Comparison of the theoretical curves for 
cr = 2, 3 and n = 3 with the data of Ref. 6. 
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Fig. 2. Dynamic structure factor for the soft acoustic phonon versus toM m for two values of 
the correlation length and MmD=I.O [Eq. (3.12) with q=0]. Solid, p~l=10 -a 
(hydrodynamic); dashed, Pr = oe (critical). 

with c% defined in Eq. (2.14b) and cofficients Ao, Bo, and C 0. In a region 
where the critical modification of the sound velocity is still small compared 
to the bare velocity Co one may approximate (2.18) by 

c 2= c~ - ~  A(~n)(~, ,~o)(l~ol2)/~kB T (2.20) 
6r 

So far we have considered the isothermal velocity of sound. However, it ]s 
well known that owing to the slowness of the heat diffusion sound 
propagates adiabatically. In special symmetry directions the adiabatic and 
isothermal sound velocities of transverse phonons coincide; however, they 
are distinct for longitudinal phonons. The general thermodynamic relation 
between adiabatic and isothermal elastic constants is 

ad __ is 
Ciklm - -  Ciklm ~-  f l i k f l l m / C s  (2.21) 

where fiik = (~aik/OT)~ and C, = (Os/OT)~ are the derivative of the stress ten- 
sor and the specific heat at constant strain, respectively. For  instance it is 
evident from Eq.(2.21) that (switching back to the Voigt notation) 

is ~llPad ~12Pad---- ~llPis - -  ~12,"is b u t  cTf = e l l  -~- f l 2 / C ~  in  a c u b i c  crystal. I f  o n e  is fitting 
experimental data over a wide temperature range the use of the full for- 
mula, Eq. (2.19), may be important and also the additional "adiabatic con- 
tribution" in Eq. (2.21) should be noticeable. 



P r o p a g a t i o n  o f  S o u n d  a t  C o n t i n u o u s  P h a s e  T r a n s i t i o n s  7 2 9  

O 
4~ 
o3 
N 

o 

> 

> 
o3 

o 

D 

E 
E 

i 

._~ 

C 

g 

g~ 

C 

0 
0 

o3 
I.,- 

I I 

+ + 

cq 

I 

c~ 

I I I [ 

+ ~ + + 



730 Schwabl 

2.3.3. Dispersion.  Associated with the frequency dependent dam- 
ping is sound dispersion. For crk ~ coc on finds (1~ 

[ 3 ] 
+cT  l + k  2 E  o-2vzsd4af2  (2.22) 

0"=1 

The frequency dependence of the real part of N is studied in the whole fre- 
quency region in Ref. 10. Measurements of the low-frequency dispersion 
would be complementary to those of the attenuation, which are in the 
asymptotic high-frequency regime. 

Let us add several remarks on the directional dependence given in 
Table II. (1~ Firstly the directional dependence should allow one to deter- 
mine n. If the symmetry and n are known from other sources, the direc- 
tional dependence still could give important information. For instance, if 
an n = 3 component system would show deviations from Table II, this 
would be an indication of internal strains lowering the symmetry of the 
order parameter. Also, it would be worthwhile to determine X1 and ~2 
individually by taking appropriate combinations of data in several direc- 
tions according to the table. Finally, the high-frequency behavior would 
give information about the damping mechanism. 

We close this section by remarking that in these calculations the back- 
reaction of the elastic modes onto the order parameter has been neglected. 
This is common to most theories of critical phenomena in solids and is 
based on the hope that the ensuing first-order character is small and that in 
the pseudocritical region the pure rigid critical theory applies. For the effect 
of cubic anisotropy see Refs. 10, 35, and 36. 5 

3. ELASTIC PHASE T R A N S I T I O N S  

Now we turn to the theory of  (21"22) elastic phase transitions. The order 
parameter characterizing a n elastic phase transition is a component of the 
strain tensor and hence the soft mode is an acoustic phonon. Prominent 
examples of elastic phase ,transitions are the martensitic transition of 
Nb3  Sn, (12) the orthorhombic to monoclinic transition of NaOH (11) and the 
transition from the cubic to the orthorhomic phase of KCN. (13) As already 
mentioned in the Introduction also KDP (~4) belongs to the elastic variety. 
In cases like this a soft optic phonon "drives" the transition. The theory 
can be applied immediately to such cases. 6 

5 Nattermann (Ref. 37) suggested that an anisotropic coupling would not only lead to a first- 
order transition but also to renormalized exponents giving a smaller P2. 

6 Systems where an optic mode couples linearly to acoustic phonons, as is the case in KDP, 
have been treated in Ref. 39. 
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The anisotropy of crystals implies that the sound velocities depend on 
the direction of propagation and thus the velocity of the soft phonon does 
not vanish throughout the whole Brillouin zone but only in one or several 
soft sectors. These sectors are one dimensional (Nb3Sn, NaOH) or two 
dimensional (KCN). Even in cubic crystals sound propagation is 
anisotropic since the tensor of elastic constants is of fourth rank. 

As is appropriate for the description of long-wavelength phenomena 
we adopt a continuum description starting from the elastic free energy. We 
derive a model Hamiltonian which contains all essential features relevant 
near the transition, and which we use to discuss the static critical behavior, 
The extreme anisotropy implies that the critical fluctuations are suppressed 
in directions outside the soft sectors. Hence the upper critical dimen- 
sionality for these phase transitions is reduced, and the classical Ginzburg- 
Landau exponents apply for one-dimensional sectors and logarithmic 
corrections appear for two-dimensional sectors. (2l) 

To determine the possible elastic phase transitions for different crystal 
symmetries one needs the elastic free energy 

1 1 ~ c~ ) F:f d3x ~CiklmGik~lmAf-~diklmrS~xr8ik~xsGlmq-C(3)G3"q-C(4)G4 (3.1) 

Here Ci, tm are the elastic constants, the second term characterizes the 
energy of inhomogeneous deformations and the third and fourth term 
represent the nonlinear interactions. The strain tensor is defined in 
Eq. (2.7). The point group symmetry determines the number of indepen- 
dent elastic constants Ciktm and via the stability limits the possible elastic 
phase transitions (Table III). 

We add several remarks concerning the soft mode spectrum and the 
characteristic Hamiltonian or free energy density following from Eq. (3.1) 
as written down below. 

(i) The sound velocity vanishes only in one- or two-dimensional sub- 
spaces. In the vicinity of these directions the sound velocity is finite but 
small and it is important that the theory includes all phonons with k, in a 
sector around the m-dimensional soft subspace. 

(ii) The "gradient" (second) term in Eq. (3.1) prevents the sound fre- 
quency from vanishing throughout the whole Brillouin zone and replaces 
the linear by a quadratic dispersion precisely at To. 

(iii) In the investigation of the critical phenomena we disregard non- 
critical phonons and thus retain only the normal coordinate of the soft 
mode. 

(iv) We disregard odd anharmonic terms. This restricts the 
applicability of the theory to situations where these are prohibited by sym- 
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Table III. Elastic Phase Transitions: The High-Temperature  Phase, 
the Vanishing Combinat ion of the Elastic Constants, the Strain,  

the  Dimensional i ty  of Soft  Sectors, Third-Order  Invariants, 
e2 = ((,1 - Szz)/~/-~, ez = (=E11 Jr- E 2 2  - -  2S33)/~/~ 

H.T.P. El. const. Strain m Third-order  invariants 

Or tho rhombic  c44 E:23 1 - -  

C55 g13 1 - -  

c66 g12 1 - -  

Tetragonal  II  c44 E:23, ~13 1 + 2 - -  
Tetragonal  I c44 ~23,/~13 1 + 2 - -  

C66 ~12 1 

Cl 1 - -  C12 g 11 - -  g22 1 
Cubic II  c44 el2, 813, 823 2 823813s 

Cll -- C12 e3, e2 1 e3(e ~ -- 3e2Z), e2(e3 z -- 3e~) 

Cubic I C44 gI2 ,  g13, 823 2 823~13812 

Ctl - c12 e3, e2 1 e3(e ~ - 3e22) 
Hexagonal  II  c44 ~23,813 1 + 2 - -  

C66 = ( 1 / 2 ) ( C l l -  C12) e12, ~11--822 2 (811--822) 3, ~12(811-- 822) 2, 8~2 
Hexagonal  I c44 ~23,813 1 + 2 - -  

C66=(1/2)(C11--C12) 812, g l l  - -  822 2 ( g l l  - -  822)3,  812(~11 - -  822) 2 

metry as is the case for orthorhombic and tetragonal crystals or where 
these are sufficiently small such that the phase transition is nearly of second 
order. 

In Ref. 21 a d-dimensional system was considered and the dimen- 
sionality of the soft subspace was assumed to be m. Hence the wave vector 
k was decomposed into an m-dimensional "soft" component p and a 
(d-m)-d imens ional  "stiff' component q, i.e., k =  (p,q). Although m is 
either 1 or 2 in three-dimensional crystals, it is useful to develop the theory 
for arbitrary m and d. Let us denote the normal coordinate of the soft 
acoustic mode by Qk- It has been shown in Ref. 21 that the elastic free 
energy functional can be mapped onto the Hamiltonian 

H= �89 f dk(rp2k-qZ + p4)]Qkl2 q-u f dkl ""dk4 /)(kl,..-, k 4 ) Q k j Q k 2 Q k 3 Q k 4  

(3.2) 

with 

I :  v ( k  1 ..... k4)=plp2P3P4~(klq-...-t-k4) , 

I I :  v ( k l , . . .  , k 4 )  = ( P l P 2 ) ( P 3 P 4 )  ~ ( k l  q- " ' "  q - k 4 )  (3.3) 
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The characteristic features of the elastic Hamiltonian (3.l) are (a) the 
anisotropy of the harmonic part because of which fluctuations in the "stiff' 
directions q are suppressed and (b) the wave vector dependence of the 
interaction. 

In Eqs. (3.2) and (3.3) we have omitted terms which are irrelevant for 
the critical behavior. The Hamiltonian (3.1) refers to a single soft sector. As 
noted above there are in general more soft sectors than one, but the 
interaction between different soft sectors goes to zero after repeated 
application of the RNG transformation and hence we may consider 
independent soft sectors. 

The dynamical model is completed by the stochastic equations of 
motion (22) 

5H 
iO.k  - i F k  Ok + rk (3.4) 

5Q_k 

appropriate for acoustic phonons, where Fk=Dp2+Dq z. The random 
force rk results from noncritical degrees of freedom. Its fluctuations are 
related to the damping coefficient by the Einstein relation 

( rk( t) rk,( t') ) = 2FkkB T 6(k + k') 6 ( t -  t') (3.5) 

which guarantees that the equilibrium distribution is given by 
exp( - H/k B T). 

3.2. Renormalization Group Theory 

The renormalization group theory of these systems has to take into 
account the anisotropy. It consists of the following steps(21'22): 

(I) Eliminateb - l < p < l ,  b 2+~/2<q<1 

(II) Rescale p'=-bp, q'=b2-"/Zq, co'=bZco, Qk-~(Q'~ 

Thereby one finds a new Hamiltonian with parameters r', u', etc. The 
decisive transformation is u ' =  b 4 + m 2db/ (1 + nonlinear terms), which gives 
immediately the critical dimensionality of Eq. (3.6)./21) 

3.3. Results 

The anisotropy of the Hamiltonian implies that the upper critical 
dimensionality(21) is 7 

m 
dc(m) = 2 +~- (3.6) 

7 A different value for the critical dimensionality is obtained (Ref. 23) if in the generalization 
of the elastic models to arbitrary dimensions instead of m the dimensionality of the stiff k 
space d - m  is kept fixed (Ref. 38). 
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For d >  dc(m) u is irrelevant and the system approaches a "Gaussian fixed 
point" (u* = 0 )  with classical critical behavior, whereas for d<~dc(m) we 
have nonclassical critical exponents. 

For  m = 1, de(l) = 5/2, and consequently three-dimensional systems 
with one-dimensional soft sectors are characterized by classical critical 
exponents (v=  1/2, t /=0 ,  7 = 1, f l=  1/2, ~ = 0 ,  6 = 3 ) .  

For  m = 2 ,  dc(2)=3,  and thus one finds classical behavior with 
logarithmic corrections in three dimensions. For  instance the static suscep- 
tibility (inverse elastic constant) and the specific heat are given by 

Z = v-111n v[ % c = [In "el rc (3.7) 

The exponents r X and r,. for models I and II are shown in Table IV. 
For  isotropic elastic phase transitions one finds de(3)= 7/2; i.e., non- 

classical behavior for d = 3. 
The essential results for the dynamics are the following. (22) 
The sound velocity is 

Cs = ~ ~ -- (2 - -  r/)/2 (3.8) 

where C is a combination of elastic constants. 
For  m = 1 the dynamical critical exponent is 

and 
z = 2 (3.9) 

G ~ (  T -  Tc) l/2 (3.8) 

The damping coefficient is 

D s ~ ( T - -  Tc) ~ 

which implies for the coefficient of attenuation 

DsCO 2 
c~= 2c3 ' ~ ( T -  Tc) 3/2r 

(3.1o) 

(3.ll) 

Table IV. Logarithmic Corrections 

r Z re 

I 1/3 1/3 

II 4/9 1/9 
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The 1/2 power law in Eq. (3.8) has been confirmed by many experiments. 
The prediction for the damping has been verified by Brillouin scattering 
experiments by Errandonea (2~ and by recent ultrasonic experiments by 
Garland et al. 09) 

The dynamic phonon susceptibility is 

z(k, ~ ) =  [ -Mco2- iogM(Dp2+Dq2)+~_-2p2+p4+q2]  -1 (3.12) 

(4 = ~or 1/2). Equation (3.12) applies to elastic phase transitions with one- 
dimensional softening (m = 1 ) for d = 3. For m = 2, ~-2 is replaced by i~ 1 
of Eq. (3.7). The neutron-scattering cross section, which is determined by 
the dynamic structure factor S(k ,~o)=Imx(k ,  co)keT/h~o, is plotted in 
Fig. 2 for the hydrodynamic and for the nonhydrodynamic critical region. 
Although this is of no concern in crystals, it is of interest to note that the 
isotropic elastic models show a breakdown of dynamical scaling similar to 
the superfluid model and the O(n)-symmetric phonon model. ~4~ 

4. D I S C U S S I O N  A N D  S U M M A R Y  

4.1. Informat ion Gained f rom Ultrasonics 

To conclude, I would like to summarize the information gained from 
sound measurements. In distortive phase transitions the static critical 
exponents c~ and /~ and the dynamic exponent z can be determined from 
data in the hydrodynamic region. By comparing the measurements with the 
theoretical scaling function the magnitude of the critical frequency can be 
found. The high-frequency behavior could give information about the dam- 
ping mechanism. The directional dependence gives information about the 
symmetry of the order parameter and allows one to detect internal strains. 

In elastic phase transitions, of course, ultrasonic and Brillouin scatter- 
ing experiments probe the dynamics of the order parameter. 

4.2. Relation to Other  Phase Transit ions 

Finally I would like to note that the theory for distortive transitions 
can be applied to any other system whose dynamics are purely relaxational. 
The examples which come to mind are anisotropic antiferromagnets and 
order-disorder transitions. 

The theory of elastic phase transitions applies also to spin reorien- 
tation transitions as found in rare earth orthoferrites ~43) and to the phason 
instability at 49 K in TTF-TCNQ. (44) The transition from smectic A to 



736 Schwabl 

smectic C in a magnetic field belongs to the same universality class con- 
cerning the statics. (45) 

Finally, it should be emphasized that we have considered the theory of 
pure systems. Defects or any sort of randomness can given rise to precursor 
effects and modified critical behavior, hence, their study is of practical as 
well as principal interest. 
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